SAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1.

نویسندگان

  • Bernardo Ramírez-Zavala
  • Selene Mogavero
  • Eva Schöller
  • Christoph Sasse
  • P David Rogers
  • Joachim Morschhäuser
چکیده

Overexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However, MDR1 expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response in C. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotes MDR1 overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 caused MDR1 overexpression in a wild-type strain but only weakly in mutants lacking ADA2. In the presence of benomyl or H2O2, compounds that induce MDR1 expression in an Mrr1- and Cap1-dependent fashion, MDR1 was upregulated with the same efficiency in wild-type and ada2Δ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to the MDR1 promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required for MDR1 overexpression in fluconazole-resistant C. albicans strains containing gain-of-function mutations in Mrr1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans.

Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we s...

متن کامل

The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans

Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster tra...

متن کامل

Regulation of efflux pump expression and drug resistance by the 2 transcription factors

31 Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired 32 drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a 33 central regulator of MDR1 expression, but other transcription factors have also been 34 implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is 35 achieved in this fungal...

متن کامل

Functional dissection of a Candida albicans zinc cluster transcription factor, the multidrug resistance regulator Mrr1.

The overexpression of the MDR1 gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to the widely used antimycotic agent fluconazole and other toxic compounds in the pathogenic yeast Candida albicans. The zinc cluster transcription factor Mrr1 controls MDR1 expression in response to inducing chemicals, and gain-of-function mutations...

متن کامل

An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses

The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 58 9  شماره 

صفحات  -

تاریخ انتشار 2014